Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 12(1): 3794, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-2004784

ABSTRACT

SARS-CoV-2 virions enter the host cells by docking their spike glycoproteins to the membrane-bound Angiotensin Converting Enzyme 2. After intracellular assembly, the newly formed virions are released from the infected cells to propagate the infection, using the extra-cytoplasmic ACE2 docking mechanism. However, the molecular events underpinning SARS-CoV-2 transmission between host cells are not fully understood. Here, we report the findings of a scanning Helium-ion microscopy study performed on Vero E6 cells infected with mNeonGreen-expressing SARS-CoV-2. Our data reveal, with unprecedented resolution, the presence of: (1) long tunneling nanotubes that connect two or more host cells over submillimeter distances; (2) large scale multiple cell fusion events (syncytia); and (3) abundant extracellular vesicles of various sizes. Taken together, these ultrastructural features describe a novel intra-cytoplasmic connection among SARS-CoV-2 infected cells that may act as an alternative route of viral transmission, disengaged from the well-known extra-cytoplasmic ACE2 docking mechanism. Such route may explain the elusiveness of SARS-CoV-2 to survive from the immune surveillance of the infected host.


Subject(s)
Microscopy/methods , SARS-CoV-2/physiology , Virus Internalization , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/transmission , COVID-19/virology , Chlorocebus aethiops , Cytoplasm/chemistry , Cytoplasm/ultrastructure , Cytoplasm/virology , Extracellular Vesicles/chemistry , Extracellular Vesicles/ultrastructure , Giant Cells/chemistry , Giant Cells/physiology , Helium/chemistry , Humans , Ions/chemistry , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
2.
Chem Biol Interact ; 329: 109209, 2020 Sep 25.
Article in English | MEDLINE | ID: covidwho-973905

ABSTRACT

Kinetic modeling of the behavior of complex chemical and biochemical systems is an effective approach to study of the mechanisms of the process. A kinetic model of coronaviral infection development with a description of the dynamic behavior of the main variables, including the concentration of viral particles, affected cells, and pathogenic microflora, is proposed. Changes in the concentration of hydrogen ions in the lungs and the pH -dependence of carbonic anhydrase activity (a key breathing enzyme) are critical. A significant result is the demonstration of an acute bifurcation transition that determines life or system collapse. This transition is connected with exponential growth of concentrations of the process participants and with functioning of the key enzyme carbonic anhydrase in development of toxic effects. Physical and chemical interpretations of the therapeutic effects of the body temperature rise and the potential therapeutic effect of "thermoheliox" (respiration with a thermolized mixture of helium and oxygen) are given. The phenomenon of "thermovaccination" is predicted, which involves stimulation of the immune response by "thermoheliox".


Subject(s)
Coronaviridae Infections/metabolism , Helium/chemistry , Oxygen/chemistry , Adaptive Immunity , Body Temperature , Carbonic Anhydrases/metabolism , Coronaviridae Infections/pathology , Coronaviridae Infections/therapy , Helium/therapeutic use , Humans , Hydrogen-Ion Concentration , Kinetics , Lung/metabolism , Models, Theoretical , Oxygen/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL